

Vegetable protein processing

Joosep Masik

What we'll talk about today

- Agenda

- Vegetable protein potential
- Types of raw materials
- Oilseed crop pre-treatment and basic process
- Starch crop pre-treatment and basic process
- Solutions for effluent management
- Why Alfa Laval?

Vegetable protein potential

- Market growth and source diversity

Protein types as % of new F&B launches tracked with plant-based protein (EU, 2017)

Source: Plant-Based Proteins Market: Global Industry Analysis (2012–2016) and Forecast (2017–2025)

- Plant-based protein market expected to reach \$16.3 billion by 2025
- Plant-based protein market CAGR of 5.7% between 2017–2025
- Ahead: More diverse plantbased protein sources with various by-products

Source: European Vegetable Protein Association

Types of vegetable protein feedstocks

Conventional processing of oilseeds

Oil – high value in very high demand for food uses

Meal – low value and used as animal feed

Oilseeds

- Extracting protein out of the meal by-product

- Instead of animal feed, high protein products (approx. 80%) and low fibre products (less than 5%) could be produced for human consumption
- Potential feedstocks for oilseed vegetable protein production: soybean, sunflower, rapeseed, cottonseed, lupin, and linseed
- De-oiled meal as raw material focus on oil extraction conditions

Oilseed processing

- Potential raw material for vegetable protein found in meal

- Processing 1,000 kg of sunflower seeds yields:
 - -428 kg oil
 - -433 kg meal
 - -Meal protein content $\approx 32\%$
- This translates into 138 kg of pure protein that could be recovered

Mean composition of sunflower cake

Component	Mean composition (%)	Data from different publications* (%)
Moisture	9.0	8.0-9.0-10.4
Dry matter	91.0	91.0-92.0-89.6
Crude proteins	32.0	29–34–32
Crude lipids	1.5	1.15–2.00
Ash	6.5	6.0-4.3-6.6-7.1
Total phenolics	3.5	3.4-2.4-4.7
Crude fibre	41.0	29–50–43
Lignin	26.8-8.4	
Hemicelluloses	13.0	12.6–12.9
Cellulose	23.0	22.9–22.5

* Boni et al. (1987), Bautista et al. (1990), Parrado and Bautista (1993), Dominguez et al. (1995), Ramachandran et al. (2007) and Geneau-Sbartaï et al. (2008)

Source: AOCS

Oil

Oil

Source: Anne Lomascolo et al. (2012)

18/11/2020 | © Alfa Laval

Oilseed processing

- Typical process to pretreat sunflower seeds for vegetable protein extraction

Alfa Laval oilseed technology

- Extracting protein, fibre and sugar syrup from oilseed white flakes

Oilseed process

- Typical flow chart for vegetable protein processing

Fibre

Starch crops

- Vegetable protein processing

- Besides vegetable protein manufacturing, focus is also on food- or technical grade starch and, in some cases, food-grade fibre production
- Potential feedstocks: yellow pea, faba bean, mung bean, chickpea, lentil, etc.
- Milled flour, either hulled or dehulled, as raw material

Starch crop process

- Fractionation of yellow peas into starch, protein and fibre

Starch crop process

- Typical process

Heat treatment of protein

- Pasteurization systems before drying

- UHT-type at high temperature and short residence time
- The protein is rapidly heated and cooled
- Limited protein denaturation

Foodec decanter centrifuge

- Key values

- High-performance two-phase separation for vegetable protein applications
- Easy control
- Cleanability: Fully CIP-able, automatic CIP sequences

Pressurized liquid discharge

- Paring disc

Reduces foam formation

- Closed and pressurized liquid discharge (up to 5 bar)
- Limits air uptake in decanter

Challenges in protein isolate production

- Wastewater treatment
- Protein wet fractionation process uses high volumes of water
 - 1:18 for oilseed crops
 - 1:6 for starch crops
- Ambition is to reduce water intake

Possibilities for whey treatment

- Recovery of water and valuable by-products

Evaporation systems

Membrane systems

Possibilities for whey treatment

- Recovery of water and valuable by-products

Evaporation systems

- Efficient thermal or mechanical vapor compression systems
- Compact and simple to install
- Well proven in handling highly viscous process liquids
- Easy to adjust capacity by modifying the number of plates
- Heat exchanger design prevents fouling
- Long processing times and less downtime

Possibilities for whey treatment

- Recovery of water and valuable by-products

- Highly selective ultrafiltration and diafiltration membranes that capture and purify proteins
- Reverse osmosis membranes
 - Recover more water by treating condensate from evaporator or permeate from ultrafiltration system
 - Reduce hydraulic load on wastewater plant
 - Reduce freshwater intake

Membrane systems

Whey processing

- Example for process

Whey processing

- Example for a syrup process

Hygiene and Cleaning-in-Place

- Broad portfolio of Alfa Laval hygienic components such as pumps, valves, pipes, and fittings
- Alfa Laval process lines are designed with hygiene in mind
- Fully automatic efficient CIP systems
- Ensure consistently high quality of the final product

Why Alfa Laval?

- World leader in separation equipment and wet fractionation
- Holistic approach to complete wet processing line
- Solutions to reduce water use in protein wet fractionation
- Pilot-scale feedstock testing at Alfa Laval's testing facility
- Case-by-case approach to different raw materials

Alfa Laval Innovation & Test Centre

- Case story with sunflower

Alfa Laval vegetable protein systems

References

- More than 180 decanters working in various vegetable protein process lines
- More than 50 different wet milling process lines supplied for different feedstocks

