

POMEVap technology

Amol Hukkerikar

- Alfa Laval's solution to palm oil mill effluent (POME)

Agenda

- What we'll talk about today

- Sustainability at Alfa Laval
- Challenges faced by palm oil mills in treating effluent
- POMEVap Alfa Laval's solution for tackling palm oil mill effluent
- Recovery of oil from palm oil mill effluent (added income)
- Towards zero liquid discharge in palm oil mills
- Recap and Q&As

Making our world better, every day

- Sustainability: A necessity and a business opportunity

Our core technologies promote:

- Responsible use of natural resources
- Reduced environmental impact from industrial processes
- Improved energy efficiency and heat recovery
- Better water treatment and reduced emissions

Turning wastewater into a valuable resource

- Alfa Laval's POMEVap solution

Value from wastewater

Sustainable and efficient, Alfa Laval's POMEVap

- Creates clean, reusable water
- Recovers valuable byproducts or resources, such as oil

Challenges of treating palm oil mill effluent

Industry trends

- Growth in global palm oil production

Number of mills in the world $\approx 1,500$

(Majority is in Malaysia, Indonesia, Thailand, Colombia, India and Africa)

Source: FAO, 2016a

Typical palm oil mill effluent loads

Palm oil mill effluent generation = 0.5–0.7 times mill capacity

Ⅳ tc	lill capacity ons/hr (FFB)	POME tons/hr	Oil in POME tons/hr	
	30	15–21	0.15–0.21	
	45	22.5–31.5	0.22-0.31	SOL P
	60	30–42	0.3–0.42	SAR AND
	75	37.5–52.5	0.37–0.52	
	90	45–63	0.45–0.63	

Palm oil mill effluent or POME

- Typical characteristics and properties

Colour: Dark brown

Temp: ≈ 80°C

Water: 94–95 %

Non-oil solids: 4–5 %

Oil: 0.8–1.0 %

Non-toxic

pH: 3.4–5.2

BOD: 10,000–45,000 ppm

COD: 15,000–100,000 ppm

BOD – Biological Oxygen Demand indicates the degree of pollution in the water or the amount of oxygen required by aerobic bacteria to remove organic matter from wastewater via decomposition

COD – Chemical Oxygen Demand is the oxygen required by chemical to destroy all organic matter in the wastewater

Conventional POME treatment practices

- Typical palm oil mill process and POME generation points

Stringent wastewater discharge standards

Acceptable conditions of sewage discharge of standards A and B New sewage treatment system

	Parameter	Unit	Stan	dard
			Α	В
	(1)	(2)	(3)	(4)
(a)	Temperature	°C	40	40
(b)	pH value	_	6.0–9.0	5.5–9.0
(c)	BOD5 at 20°C	mg/L	20	50
(d)	COD	mg/L	120	200
(e)	Suspended solids	mg/L	50	100
(f)	Oil and grease	mg/L	5.0	10.0
(g)	Ammoniacal nitrogen (enclosed water body)	mg/L	5.0	5.0
(h)	Ammoniacal nitrogen (river)	mg/L	10.0	20.0
(i)	Nitrate – Nitrogen (river)	mg/L	20.0	50.0
(j)	Nitrate – Nitrogen (enclosed water body)	mg/L	10.0	10.0
(k)	Phosphorus (enclosed water body)	mg/L	5.0	10.0

Note! Standard A is applicable to discharges into any inland waters within catchment areas listed in the Third Schedule, while standard B is applicable to any other inland waters of Malaysian waters.

Source: Dept of Environment, Malaysia

Challenges of palm oil mill effluent

- A recap

- Open ponding requires huge space
- Methane (GHG) emissions to the atmosphere
- Methane capture and reuse systems don't offer a complete solution
- No resource recovery
- Issues with the discharge of treated effluent/re-use

Alfa Laval POMEVap

27/10/2020 |© Alfa Laval

Alfa Laval POMEVap

- Forced circulation plate evaporator for treatment of palm oil mill effluent

Based on AlfaFlash technology, POMEVap efficiently separates effluent into:

- Water in the form of process condensate (~300–500 ppm BOD)
- **Solids** in the form of concentrate (sludge with ~40% solids)

POMEVap – Sustainable way of treating POME

- Benefits of the Alfa Laval POMEVap

Alfa Laval AlfaFlash

- Alfa Laval's solution for fouling evaporation applications

Probably the best evaporation technology available for fouling applications

- Forced circulation with suppressed boiling
- Heats the liquid under pressure inside the heat exchanger
- The heated liquid is discharged to the cyclone vessel where the pressure is lower, and flashing will occur
- Flash = Rapidly boil off

AlfaFlash

- Probably the best evaporation technology in the market for fouling applications

- High liquid circulation rates → high turbulence and high shear rate
- Self-cleaning effect → cleaning/preventing fouling
- Significantly improved CIP efficiency and maximum uptime

AlfaFlash for less fouling

- Better fouling resistance due to high shear rate and low viscosity

Non-Newtonian Liquids

WideGap as AlfaFlash PHE – Wide Open for POME

- Handles liquids with suspended solids efficiently

Alfa Laval WideGap heat exchanger

- Optimal plate gap and pattern
- Lower fouling rate, more uptime

Contact in-line

Free flow between contact lines

Special nonclogging big studs port design

- Before and after: Trial on palm oil mill effluent

Before cleaning (one week operation on POME)

POMEVap evaporator – How it works

POMEVap system

- Customized configurations to meet the mill's needs

Example – Triple-effect POMEVap system for mill with 30 tons of FFB/hr

POMEVap – Installed and commissioned

- For mill with 60/80 tons of FFB/hr

Cyclone separation vessels and decanter

Recirculation pumps

POMEVap – Installed and commissioned

- For mill with 60/80 tons of FFB/hr

Visual impression of concentrated product

Concentrate disposal

POMEVap condensate

Mineral water

Challenges faced by palm oil mills

- Open ponding requires huge space
- Methane (GHG) emission to atmosphere
- No resource recovery
- Issues with discharge of treated effluent/re-use

Solved

POMEVap + decanter solution for oil recovery

- Adding a decanter to the system to recover the oil

POMEVap + decanter – Installed and commissioned

Sample	Oil content (%)
Raw POME	1.30
Decanter feed	2.10
Heavy phase	0.55
Cake	0.55

Results: Soxhlet extraction

Raw POME – Decanter feed – Heavy phase – Light phase

POMEVap + decanter solution for oil recovery

- Combining decanter for oil recovery

ALLA	
センシート	

	Value	Unit
Mill capacity (FFB/hr) Mill capacity (FFB/year)	45 270,000	FFB tons/hr FFB tons/year*
POME factor Total POME generated	0.60 162,000	_ tons/year
Oil recovery from 1 to 0.5%	810	tons/year
Oil price	650	USD/ton
Added income due to oil recovery	526K	USD/year
Payback for POMEVap	3-4 years	

*Based on running hours of 6,000 hr/year

Recovered oil from decanter

Challenges faced by palm oil mills

- Open ponding requires huge space
- Methane (GHG) emission to atmosphere
- No resource recovery
- Issues with discharge of treated effluent/re-use

Solved

Towards zero-liquid discharge in palm oil mills

Towards zero liquid discharge in palm oil mills

- Re-use of process condensate from POMEVap

27/10/2020 | © Alfa Laval

Alfa Laval SteamVap

- Alfa Laval evaporator for steam generation

The Alfa Laval SteamVap is based on AlfaVap technology, a rising film plate evaporator

Components

- 1 Evaporator PHE
- 1 Vapour separation vessel
- 1 Frame with pumps
- 1 Vapour outlet for discharging steam

Towards zero liquid discharge in palm oil mills

- Key benefits to mill owners

- A complete solution to solve POME issues
- Reduced boiler feedwater consumption (additional income)
- Recovery of oil from POME (additional income)
- Sludge reuse as a by-product (additional income)
- Based on proven, reliable technologies
- Land previously used for ponding can be used for other meaningful purposes
- The concept can be easily applied to existing as well as new installations
- Assists palm oil mills to achieve sustainable operation

POMEVap system – compact design

- A comparison

POMEVap system vs. Falling Film system

POMEVap plate evaporator

Shell-and-tube falling film evaporator

Focus on R&D

To develop the POMEVap solution, Alfa Laval has tested the POME concentration using Alfa Laval's evaporation test unit for an extended trial period (\approx 4 weeks) at customer mill sites in Malaysia

What can POMEVap do for you?

- Input data needed for budgetary quote

- **Design inputs:** Feed rate, feed concentration, feed temperature
- Utility: Available steam temperature, ambient air temperature, available power (kW)
- Oil content in the POME feed

Our evaporation system portfolio

- Broad solutions for easy-to-handle and more challenging liquids

Thanks for joining!

Do you want to get in touch?

Reach out and send an e-mail to: amol.hukkerikar@alfalaval.com

The presentation and the recording of this webinar will be sent out to the participants soon!

For more information

Alfa Laval POME management

Alfa Laval AlfaFlash evaporation systems

