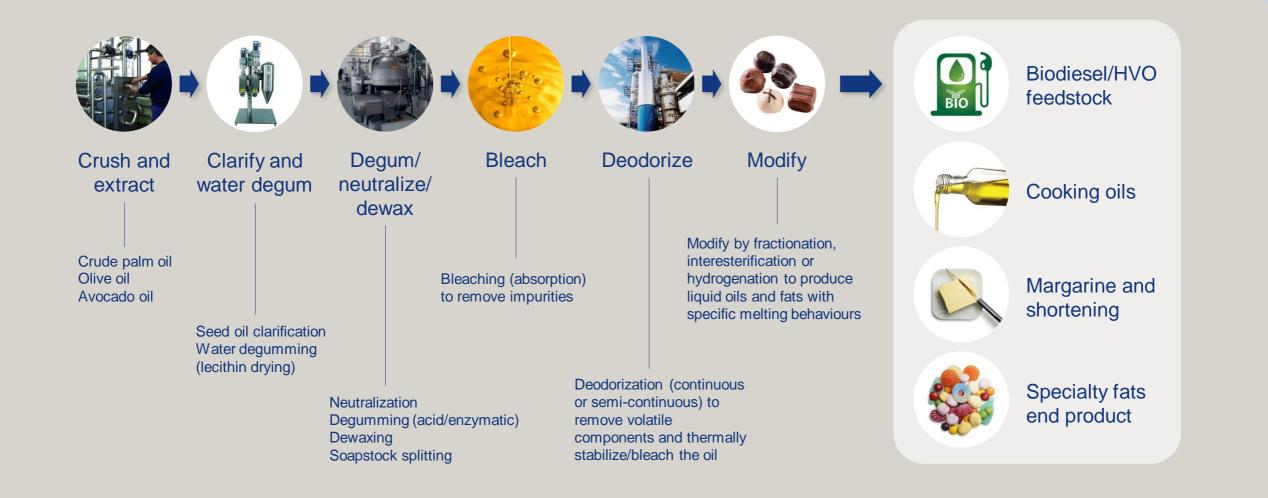


3-MCPD and GE mitigation in palm oil processing

Alexey Shevchenko

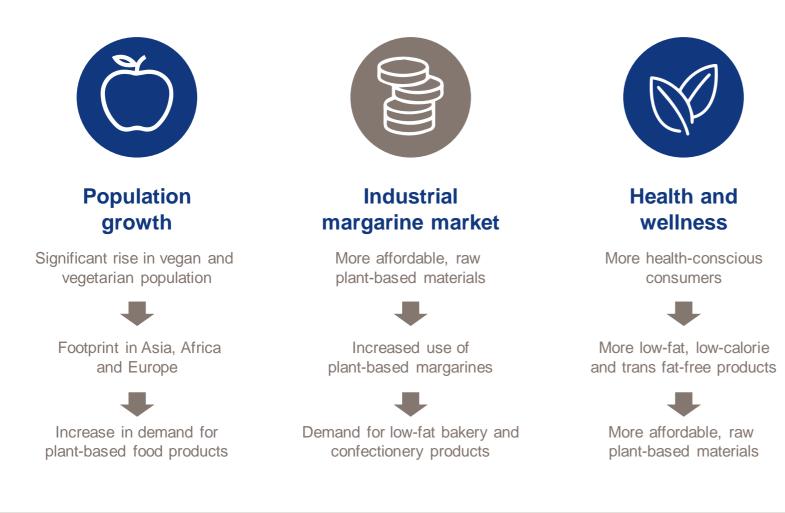
- Webinar 7 May 2020



- A short introduction to Alfa Laval's edible oil portfolio
- Edible oil industry trends and focus
- Introduction to the 3-MCPD and GE issues
- 3-MCPD mitigation in more depth
- Process routes to GE mitigation
- Conclusion

Our edible oil process line portfolio

- Comprehensive solutions


Industry trends

Industry trends and focus

- Shaping the future of margarine and shortening

Environmental footprint

Focus on image, legislation and utility cost

Water and energy savings

Continued investments in plant infrastructure

Introduction to 3-MCPD and GE issues

What are 3-MCPDE and GE?

3-monochloropropane diol (3-MCPD) 3-monochloropropane diol ester (3-MCPDE)

Glycidyl ester (GE)

Why limit 3-MCPDE and GE exposure?

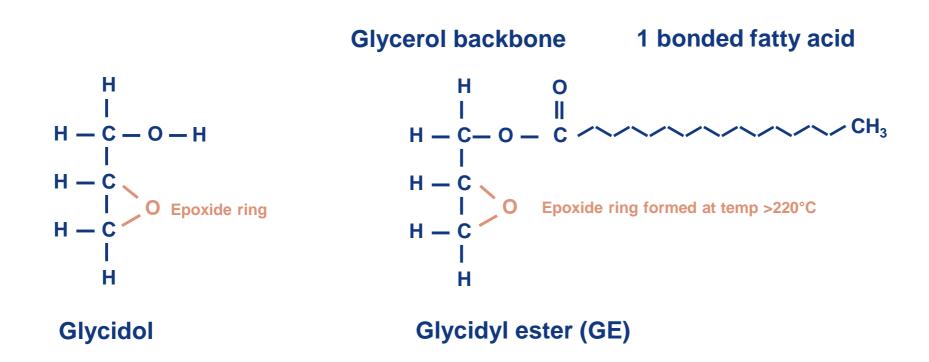
Classified as process contaminants

• 3-monochloropropane diol (3-MCPD)

• 3-monochloropropane diol ester (3-MCPDE)

Possibly carcinogenic to humans¹ Harmful to kidneys (EFSA² report 2016)

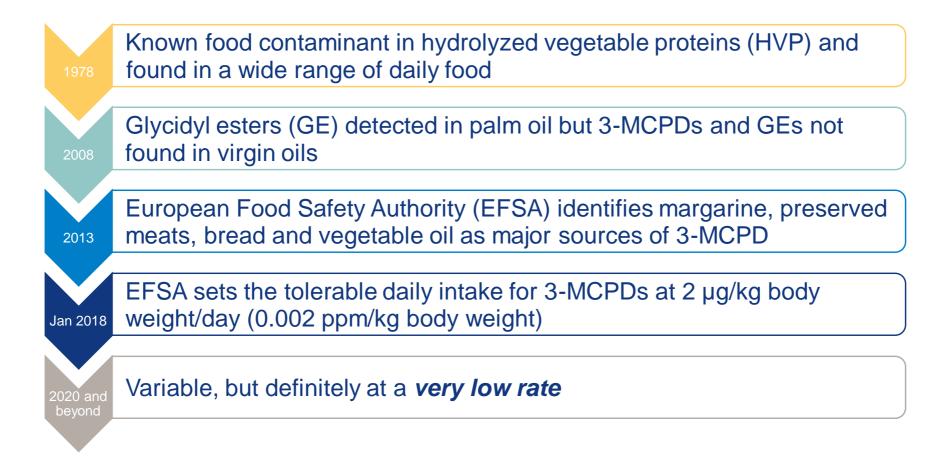
• Glycidyl ester (GE)


Probably carcinogenic to humans¹

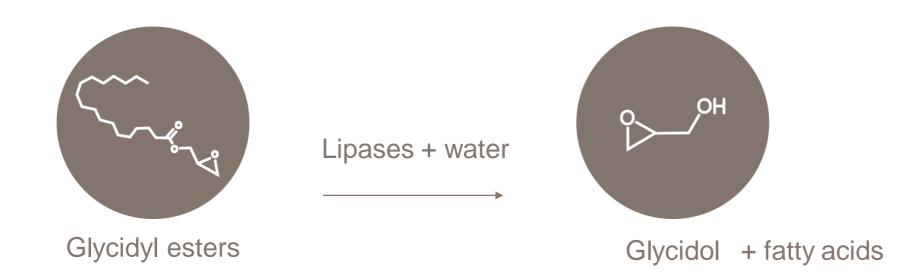
¹ Classification by International Agency for Research on Cancer

² European Food Safety Authority

Glycidol and glycidyl ester



3-MCPDE and GE have been around for decades


- But have gained more attention in recent years

Reactions of glycidyl esters

GEs are rapidly digested by gut lipases to form glycidol. Consequently, GEs should be considered as sources of glycidol exposure.¹

¹ Food Addit Contam Part A Chem Analytical Control Expo Risk Assess. 2013;30(1):69–79. Epub 2012 Oct 22, "Application of gastrointestinal modelling to the study of the digestion and transformation of dietary glycidyl esters", Frank N1, Dubois M, Scholz G, Seefelder W, Chuat JY, Schilter B.

EU legislation on GE affects supply chain

Maximum Glycidyl fatty acid esters expressed level µg/kg as glycidol Vegetable oils and fats placed on the market for the final consumer or for use as 1.000 an ingredient in food with the exception of **1.0 ppm** the foods below Vegetable oils and fats destined for the production of baby food and processed 500 cereal-based food for infants and young **0.5 ppm** children

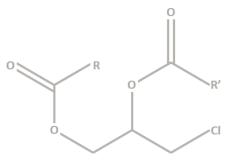
Commission Regulation (EU) 2018/290, of 26 February 2018

Malaysian Palm Oil Board licensing conditions

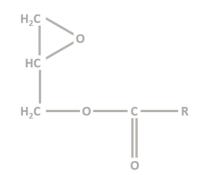
- Effective 1 January 2021

Parameters	Processed palm kernel oil	Processed palm oil	Effective date
GE (max.)	1.0 ppm	1.0 ppm	1 January 2021
3-MCPDE (max.) 1.25 ppm		2.5 ppm	1 January 2021 until 31 December 2021
		1.25 ppm*	1 January 2022

* Effective date for integrated refineries, exporters and importers is 1 January 2022. The effective date for independent refineries is 1 January 2023.



Challenges in 3-MCPD/GE mitigation


Factors contributing to 3-MCPDE and GE formation

- Chloride and high temperature

3-MCPDE molecule

GE molecule

- 3-MCPD and its esters are formed in heat-processed, fatty foods from glycerols or acylglycerides in the presence of chloride ions. Much of the 3-MCPDE found in foods is present as fatty acyl esters.
- Factors contributing to 3-MCPDE in refining of palm oil:
 - Presence of chloride in the crude palm oil (CPO), bleaching clay and steam
 - Acid degumming and acid-activated bleaching clay
 - High temperature during deodorization
- GE is formed from **diacylglyceride (DAG)** and monoacylglycerols (MAG), at temperatures above 230°C. GE is correlated with DAG content.
 - DAG in palm oil is between 6–12% whereas normal seed oil is 1–5%

Beware of GE migration into palm olein fractions

What happens in the dry fractionation process

- RBD* palm oil GE = 0.6 ppm
- Palm olein IV 56 GE = 0.75 ppm
- Palm olein IV 64 GE = 0.9 ppm

By regulation GE < 1 ppm

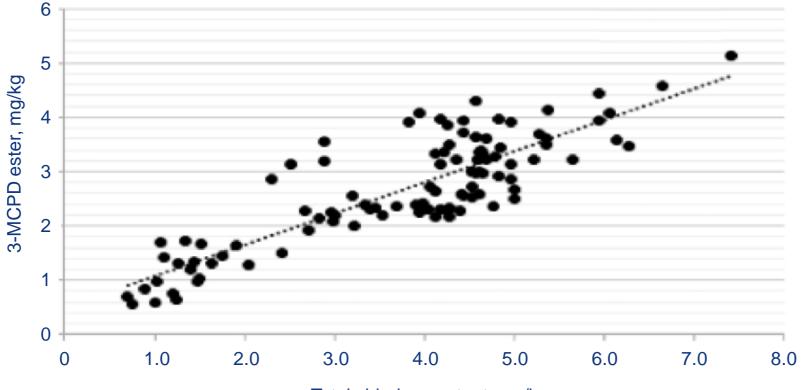
GE suggested for RBD palm oil GE = 0.5 to 0.6 ppm

* RBD = Refined, bleached and deodorized

Process challenges

- 3-MCPD and GE mitigations

- Where and how to reduce chloride content to minimize 3-MCPD formation?
- How to fit in 3-MCPD and GE mitigation into an existing site?
- How to choose between the available GE mitigation options?
- How to prepare for stricter regulations of the maximum content of these contaminants in the future?



3-MCPD mitigation

07/05/2020 |© Alfa Laval

Does chloride have a direct effect on 3-MCPDE levels?

- Test conducted in refinery with different chloride levels

Total chlorine content, mg/kg

Choosing the right mitigation method

- Which method is best for you?

Mitigation approaches

Plantations	 Reduce chlorine in fresh palm fruit bunches by changing fertilizers used Reduce DAG in palm oil by ensuring milling within 48 hours – improve quality of crude palm oil
Mills	 Wash fresh palm fruit bunches to remove chlorine precursor Fresh palm fruit bunches sterilization with steam without chlorine Wash fresh crude palm oil with slightly alkaline water
Refineries	 Wash the crude palm oil as the refinery and minimize residence time and temperature during deodorization to the extent possible

Malaysian Palm Oil Board Circular

- 30 October 2019

Quality specifications for crude palm oil

Level of total chloride in palm oil products

Specification	Standard quality	Sample	Average (ppm)	Range (ppm)
Free fatty acid (FFA) (as palmitic), % max.	5.0	Crude palm oil	7.293 ± 5.988	2.623 to
Moistures and impurities (M&I), % max.	0.25		1.200 ± 0.000	15.584
DOBI, min.	2.31			
Chlorine (Cl), max.	2.0 ppm			
		we have sor	ne gaps to co	over

Source: MPOB Circular No. 01/2019

Crude palm oil quality in different streams

- Premium crude palm oil specification vs. oil from recovered streams

Quality	Crude palm oil	Condensate oil	Empty fruit bunch juice
Free fatty acids (%)	3% max.	18.3–30.2%	14.4–21.8%
Deterioration of Bleachability Index (DOBI)	2.8 min.	0.95–1.04	1.05–1.67
Chloride (ppm)	<2	41.7–53.8	20.5-41.7
Phosphates (ppm)	<10	70.5–112	89–153

Proven crude palm oil washing track record

- Alfa Laval presence in the South-East Asian region

34 crude palm oil washing systems sold since 2017

Mill 300 tons per day

- IOI palm oil mill
- Unique palm oil mill
- Boustead palm oil mill
- IJM Edible Oils

Mill 600 tons per day

- Sarawak Oil Palms
- Kim Loong
- Classic Segamat

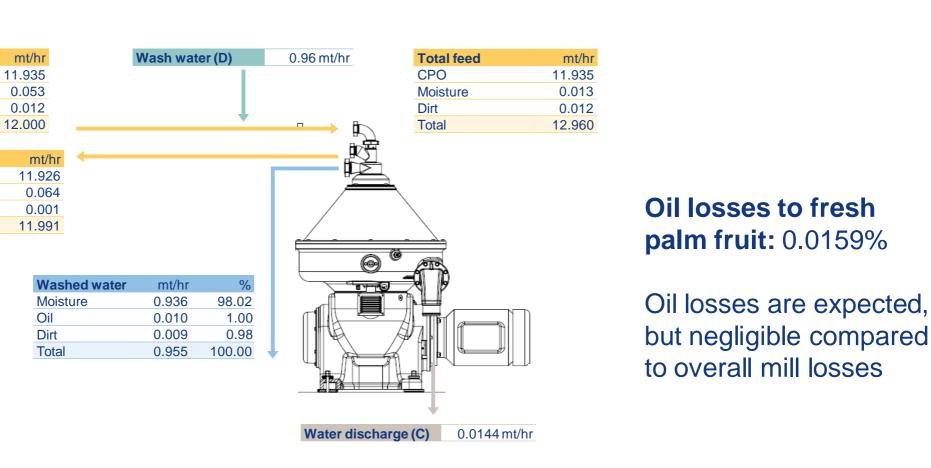
Refinery 100–1000 tons per day

- PGEO Group
- Wilmar Group
- Sime Darby Group
- International Oil Group

Refinery 1000–3000 tons per day

- International Oil Group
- Patum Vegetable
 Oil

Up to 84% of chloride reduction post-washing


- Actual field results from a crude palm oil washing installation at a palm oil mill

Sample date	CPO total chloride		Percentage CI		Treated water total	Wastewater total
	Feed CPO	Washed CPO	reduction (%)		chloride (ppm)	chloride (ppm)
6/10/2018	5.952	0.626	89.48		8.576	93.562
11/10/2018	3.665	0.669	81.75		6.409	57.641
24/10/2018	4.260	0.408	90.42		7.497	80.459
27/10/2018	4.295	0.430	89.99		7.708	82.881
6/04/2019	11.298	2.252	80.07		6.333	56.836
20/05/2019	10.091	2.196	78.24		7.673	94.507
14/06/2019	6.317	1.021	83.84		7.683	53.664
15/06/2019	8.796	2.486	71.74		7.639	87.410
17/06/2019	11.857	1.183	90.02		9.313	67.748
Average	7.392	1.252	83.95		7.648	74.968

3-MCPDE/PIPOC2019/CPO washing results

Mass balance for crude palm oil washing

- Premium quality oil with low chloride content is the ultimate goal

Crude palm oil in (A)

Crude palm oil out (B)

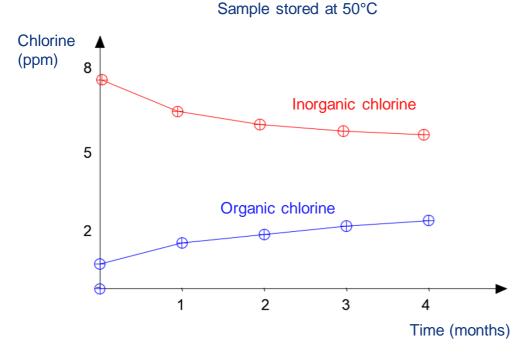
CPO

Dirt

Total

CPO

Dirt

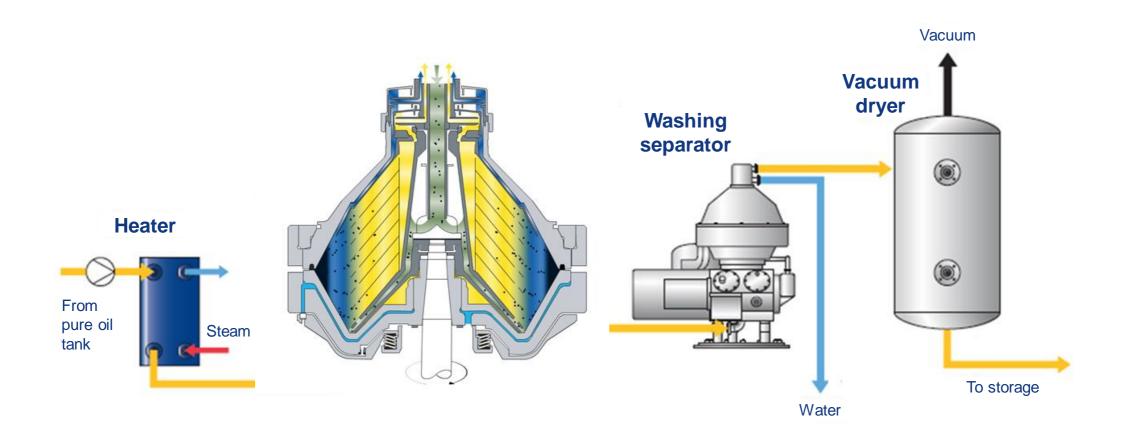

Total

Moisture

Moisture

Storage time impacts oil quality

- Longer storage time = higher organic chloride content and lower inorganic chloride content


Time: Consider the effect of long holding time and transit time on chloride formation

* Study done by a refinery in Italy

07/05/2020 | © Alfa Laval

Simple, powerful and efficient CPO washing

Considerations: CPO washing for 3-MCPDE mitigation

Mills

- Early removal of chlorides most effective
- Overall lower utility cost
- Evaluate equipment maintenance cost (less cost if displacing existing purifiers)
- Easier for effluent handling
- Existing vacuum system can be used

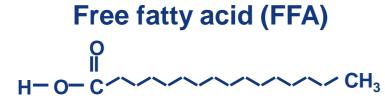
Refineries

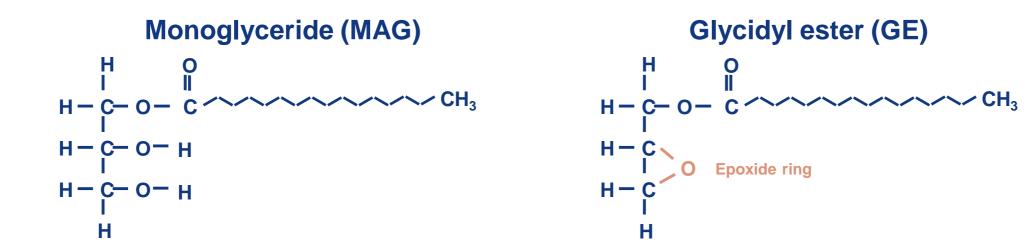
- Ability to receive crude palm oil from various sources
- Ability to handle high processing volume
- Centralized test equipment
- Easier access to skilled workers
- Need to install a new vacuum system

GE mitigation

07/05/2020 | © Alfa Laval

Glycidyl ester contributing factors


Contributing factors

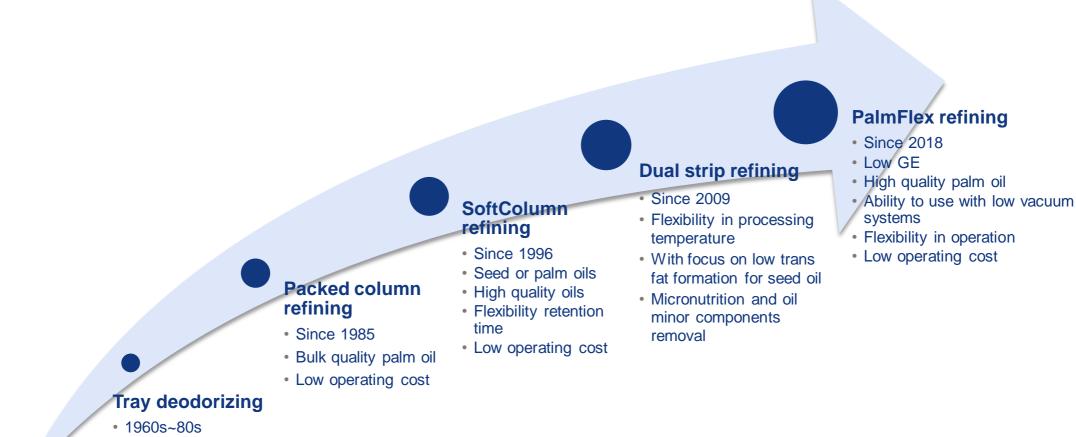

- High diacylglycerides (DAG)
- High deodorizing temperature (>220°C)
- Long retention time in deodorizer
- Hydrolysis at high temperature with steam effect

	Deodorizing temperature					
DAG	215°C	225°C	250°C			
3%	0.6–1.0	2.2–3.5	3.0–7.5			
5%	1.0–2.5	1.5–4.0	6–10			
7%	1.5–3.5	2.5–5.0	9–15			

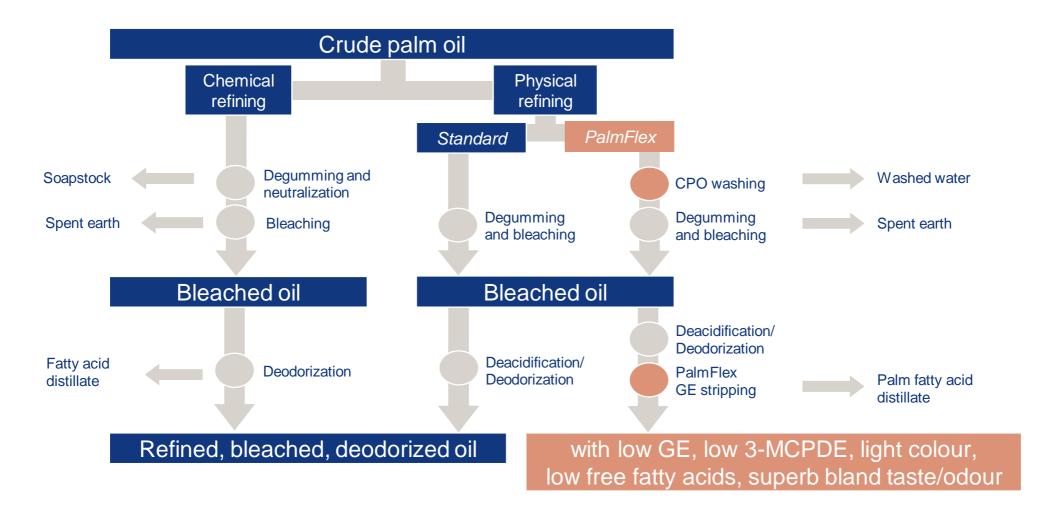
Glycidyl ester (ppm) formed as function of DAG content and temperature.

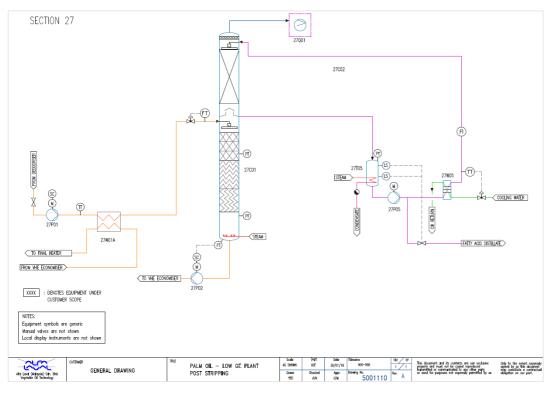
Free fatty acid, monoglyceride and glycidyl ester

Glycidol ester mitigation methods


Method Comment Minimize formation in the Not sufficient to reach levels well below deodorizer: limit temperature 0.5/1 ppm for palm oils or similar, especially and residence time for low colour product requirements Re-refining with activated Can reach 0.2–0.3 ppm, but post-refining bleaching earth followed by has high OPEX and CAPEX and does not mild deodorization completely eliminate GEs Direct GE stripping can reach levels below **Direct stripping** 0.5 ppm subject to GE content in feed Alfa Laval ZeroGE[™] . . .

Development of Alfa Laval deodorizing technology


- A commitment to continuous development



- High steam consumption
- High operating cost

Alfa Laval PalmFlex – the optimum refining route

GE stripper designed specifically for GE removal

Performance based on commercial scale plant data and Alfa Laval's proprietary lipid property library and the process simulator PRO II from SimSci.

References

 L. P. Cunico, R. Ceriani, B. Sarup, J. P. O'Connell, R. Gani, "Data, analysis and modeling of physical properties for process design of systems involving lipids", Fluid Phase Equilibria, 362, p 318ff (2014).
 R. Ceriani, R. Gani, Y. A. Liu, "Prediction of vapor pressure and heats of vaporization of edible oil/fat compounds by group contribution". Fluid Phase Equilibria, 337, p 53ff (2012).

Great flexibility with Alfa Laval PalmFlex refining

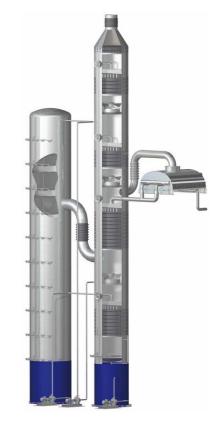
Direct GE stripper with GE <0.5 ppm, low colour, low FFA, superb bland and odourless oil

No double refining needed

2

Bulk refining for low colour, low FFA, and superb bland and odourless oil

3


With high FFA feed, the plant can still operate at the rated capacity based on Palm Oil Refiners Association of Malaysia (PORAM) specifications

4

The plant can also operate above rated capacity with PORAM specifications

5

The plant can also operate at 70% turn-down without having a big impact on the per-ton cost

Achieve the highest quality

- Optimal refined, bleached and deodorized (RBD) palm oil

Quality of RBD Palm Oil	Standard	PalmFlex
Free fatty acids (FFA)	Max. 0.05%	0.03~0.04%
Moisture and volatile matter	Max. 0.05%	Max. 0.03% (with refined oil dryer)
Colour (Lovibond 5¼" cell)	Max. 2.5 red / 25 yellow	Max. 2.0 red / 20 yellow
Peroxide value	0	0
Taste / odour	Bland / odourless	Superb bland / odourless
Palm fatty acid distillate purity (based on 5% FFA in feed)	Min. 89%	Min. 89%
3-MCPDE	4–6 ppm	< 1 ppm (with washing)
Glycidyl esters (GE)	8–15 ppm	0.3~0.5 ppm (with GE stripper)

Note: Final oil quality may vary subject to feedstock and process variation.

How PalmFlex meets large refinery expectations

- Consistent high-quality oil
- Continuous operation
- Flexibility in operating choices
- Low operating cost with high heat recovery
- Safe and easy operation
- Strong aftersales, service and support

Summary of benefits

07/05/2020 |© Alfa Laval

Alfa Laval in 3-MCPD and GE mitigation technology

- Summary of benefits

- Highly efficient chloride reduction at the mill and at the refinery with minimum oil losses
- Proven Alfa Laval PalmFlex refining technology delivers highest oil quality at low operating costs while meeting stringent food safety regulations

